

VIDYASAGAR UNIVERSITY

B.Sc. Honours Examination 2021

(CBCS)

4th Semester

PHYSICS

PAPER-C8T & C8P

MATHEMATICAL PHYSICS III

Full Marks : 60

Time : 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

THEORY : C8T

Answer any two questions.

2×15

1. (a) Solve the coupled ordinary linear Differential Equation

 $\dot{x} = 5x - 3y$ $\dot{y} = -6x + 2y$

(b) Locate and classify the singular point(s) and evaluate the residue(s)

of
$$\frac{e^{1/z}}{z^2}$$
. 9+6

2. (a) Using Cayley Hamilton Theorem find the inverse matrix $\begin{bmatrix} \cos A & \sin A \\ -\sin A & \cos A \end{bmatrix}$

(b) Evaluate $\oint_C \frac{\cosh iz}{z^2 + 4z + 3} dz$

where C is the circle having |z| = 2.

(c) Using contour integration evaluate the real integral

$$\int_{0}^{\infty} \frac{1}{1+x^2} dx = \frac{\pi}{2}$$
 5+5+5

- **3.** (a) What is Cauchy Riemann condition? Apply on the function $f(z)=|z|^2$ and comment on its analyticity.
 - (b) Use residue theorem to evaluate:

$$\int_{0}^{2\pi} \frac{d\theta}{3 - 2\cos\theta + \sin\theta}$$

(c) Find the Fourier transform of the function $f(x) = e^{(-x^2)}$ 5+5+5

4. (a) For Pauli spin matrices

 $\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \text{and} \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Show that(i) $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = I$ and (ii) $[\sigma_i, \sigma_j] = 2i\sigma_k$, where i, j, k follow cyclic order.

C/21/BSc/4th Sem/PHSH-C8T & C8P

(b) Verify Cayley-Hamilton theorem for $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

- (c) Find the eigen values of $\begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}$.
- (d) Show that $i(A A^{\dagger})$ is a Hermitian matrix. [3+(1+1+1)]+3+3+3

Answer any one question.

 1×10

5. (a) Verify whether the following matrix is orthogonal:

- $\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}.$ (b) Verify whether $\begin{pmatrix} 3/5 & 4i/5 \\ -4i/5 & -3/5 \end{pmatrix}$ is unitary.
- (c) Prove that the eigen values of Hermitian matrix are real and the eigen vectors of a Hermitian matrix are orthogonal. 3 + 3 + 4
- **6.** (a) Find Fourier Cosine transform of $f(x) = e^{-ax}, (a > 0, x \ge 0)$
 - (b) Find the Taylor series expansion of a function of the complex variable

$$f(z) = \frac{1}{(z-1)(z-3)}$$
 about the point $z = 4$. 5+5

C/21/BSc/4th Sem/PHSH-C8T & C8P

PRACTICAL : C8P

1. Write a Python programme to evaluate the Fourier coefficients of the following function :

$$f(x) = \begin{cases} 0 & \text{for } -2 \le x \le 0\\ 4 & \text{for } 0 \le x \le 2 \end{cases}$$

2. Write a Python programme script to solve the differential equation:

$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = 0$$

 $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = 0$ 3. Write a python program to evaluate $\frac{1}{\sqrt{2\pi\sigma^2}} \int e^{\frac{(x-2)^2}{2\sigma^2}} (x+3) dx$

for $\sigma = 1, 0.1$.

[Internal assessment – 10] [Attendance – 5]

4